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Purpose of this talk

■ Describe a deterministic max-flow 
network interdiction problem

■ Describe stochastic variants
■ Provide a new, simple solution 

methodology for the stochastic 
problems

■ Discuss extensions to other 
interdiction problems and more 
general two-stage stochastic programs
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Generic network interdiction 
problem

■ Using limited resources, attack an 
adversary’s network so as to minimize 
the functionality of that network (to the 
adversary).

■ Networks: Road, pipeline, comm
■ Functionality: Max flow, shortest path, 

convoy movement, path existence
■ Attacks: Aerial sorties, cruise missiles, 

special ops, interception
■ Can generalize: “system interdiction”
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Max-flow interdiction

Basic Deterministic Model
on G=(N,A) with artificial arc a = (t,s)

where 
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Max-flow interdiction

Converts to
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Interdiction under uncertainty

■ Uncertain success or data, SMFI:
( )

( )

1 if interdiction of is successful

0 otherwise
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Probability of kill

■ Assume pk = E[Ĩk] is known
■ Weaponeers know this stuff!
■ Well…
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Bound on z*,  pessimistic

■ New soln methodology needs bounds
■ From Jensen’s inequality, obtain a 

global upper bound given a “good”   : 

■ Can also use probabilistic bounds
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Bound on z*,  optimistic

■ Lower bound:
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Bounds on z*: Comments

■ Bounds can be improved by 
expanding in terms of conditional 
probabilities e.g., by conditioning on 
the number of successful 
interdictions.

■ Can use probabilistic bounds.
■ But, keep it simple for this talk. 



11

Solution methodology, outline

■ Partial Enumeration: Find all that 
might be optimal by using the bounds.  
This set of candidate solutions is     .

■ Then Screen: Use Monte Carlo 
screening methods to identify the best, 
or the best few .

■ PETS
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Fundamental theorem for PE

■ Theorem 1:     can be optimal for SMFI 
only if  

■ So can find a set of candidate 
solutions using the algorithm on the 
next slide.

■ For simplicity, assume that the set of 
feasible interdiction plans defined by X
has a cardinality constraint:
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Alg. to find candidate solutions

1. = ∅∅∅∅ ; Compute global UB
2. Solve                      for            

3. If              print and halt;
4. Add      to 
5. Add constraint

to constraint set and go to 1;
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Alg. to find candidate solutions

( )Compute * ˆz z= x*z

z′

Find good x̂
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Screening candidate solutions

� For small R, can actually compute Ez
exactly because there are only 2R

ways that R attempted interdictions 
can be successful or fail

� But, will discuss and illustrate 
statistical screening procedures 
because they are necessary for 
typical applications of PETS
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More on screening
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Advantages to PETS

� No large approximating problems 
with multiple scenarios need be 
solved

� For the most part, we’re solving 
simple bounding models and using 
Monte Carlo to evaluate TSSPs with 
fixed first-stage variables

� No complicated decompositions 
needed
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Computational results (1)

■ Grid networks

■ 100 samples for each 
■ uk is uniform[10,100], pk=0.9
■ Only resource constraint:

■ 500 MHz laptop using GAMS/OSL
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Table of results

10 by 10 grid, |N|=102, |A|=304

Good 
Solns.

Num. 
Soln.

UBZbestLBR
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Computational results (2)

10 by 10 grid, |N|=102, |A|=310
95% confidence

R LB zbest UB Num.
Solns.

Good
Solns.

6 124.1 129.3 133.7 6  
7 98.6 103.3 108.8 20  
8 74.3 79.6 84.5 27  
9 55.3 61.9 66.8 41  
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Extensions

■ PETS will work for any TSSP provided 
that
– First-stage variables are binary or integers of 

modest magnitude,
– An optimistic bound is not too hard to 

compute, and
– For fixed x, Monte Carlo sampling is efficient.

■ For optimistic bounds, we use 
Jensen’s ineq. and restricted recourse

■ Often, the global, pessimistic bound 
will be probabilistic
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Comments and Conclusions

■ New, simple technique to solve 
stochastic network interdiction 
problems

■ Generalizes to a broad class of TSSPs


